metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4.8D26, C52.57D4, Q8.8D26, C52.18C23, D52.12C22, Dic26.11C22, D4⋊D13⋊7C2, C4○D4⋊2D13, C13⋊5(C4○D8), Q8⋊D13⋊7C2, (C2×C26).9D4, D4.D13⋊7C2, C13⋊Q16⋊7C2, C26.60(C2×D4), (C2×C4).59D26, D52⋊5C2⋊4C2, C4.32(C13⋊D4), (C2×C52).43C22, (D4×C13).8C22, C4.18(C22×D13), (Q8×C13).8C22, C13⋊2C8.10C22, C22.1(C13⋊D4), (C2×C13⋊2C8)⋊8C2, (C13×C4○D4)⋊2C2, C2.24(C2×C13⋊D4), SmallGroup(416,171)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C52.C23
G = < a,b,c,d | a52=b2=d2=1, c2=a26, bab=a-1, ac=ca, dad=a27, bc=cb, dbd=a13b, cd=dc >
Subgroups: 368 in 62 conjugacy classes, 29 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C13, C2×C8, D8, SD16, Q16, C4○D4, C4○D4, D13, C26, C26, C4○D8, Dic13, C52, C52, D26, C2×C26, C2×C26, C13⋊2C8, Dic26, C4×D13, D52, C13⋊D4, C2×C52, C2×C52, D4×C13, D4×C13, Q8×C13, C2×C13⋊2C8, D4⋊D13, D4.D13, Q8⋊D13, C13⋊Q16, D52⋊5C2, C13×C4○D4, C52.C23
Quotients: C1, C2, C22, D4, C23, C2×D4, D13, C4○D8, D26, C13⋊D4, C22×D13, C2×C13⋊D4, C52.C23
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208)
(1 115)(2 114)(3 113)(4 112)(5 111)(6 110)(7 109)(8 108)(9 107)(10 106)(11 105)(12 156)(13 155)(14 154)(15 153)(16 152)(17 151)(18 150)(19 149)(20 148)(21 147)(22 146)(23 145)(24 144)(25 143)(26 142)(27 141)(28 140)(29 139)(30 138)(31 137)(32 136)(33 135)(34 134)(35 133)(36 132)(37 131)(38 130)(39 129)(40 128)(41 127)(42 126)(43 125)(44 124)(45 123)(46 122)(47 121)(48 120)(49 119)(50 118)(51 117)(52 116)(53 193)(54 192)(55 191)(56 190)(57 189)(58 188)(59 187)(60 186)(61 185)(62 184)(63 183)(64 182)(65 181)(66 180)(67 179)(68 178)(69 177)(70 176)(71 175)(72 174)(73 173)(74 172)(75 171)(76 170)(77 169)(78 168)(79 167)(80 166)(81 165)(82 164)(83 163)(84 162)(85 161)(86 160)(87 159)(88 158)(89 157)(90 208)(91 207)(92 206)(93 205)(94 204)(95 203)(96 202)(97 201)(98 200)(99 199)(100 198)(101 197)(102 196)(103 195)(104 194)
(1 40 27 14)(2 41 28 15)(3 42 29 16)(4 43 30 17)(5 44 31 18)(6 45 32 19)(7 46 33 20)(8 47 34 21)(9 48 35 22)(10 49 36 23)(11 50 37 24)(12 51 38 25)(13 52 39 26)(53 66 79 92)(54 67 80 93)(55 68 81 94)(56 69 82 95)(57 70 83 96)(58 71 84 97)(59 72 85 98)(60 73 86 99)(61 74 87 100)(62 75 88 101)(63 76 89 102)(64 77 90 103)(65 78 91 104)(105 118 131 144)(106 119 132 145)(107 120 133 146)(108 121 134 147)(109 122 135 148)(110 123 136 149)(111 124 137 150)(112 125 138 151)(113 126 139 152)(114 127 140 153)(115 128 141 154)(116 129 142 155)(117 130 143 156)(157 196 183 170)(158 197 184 171)(159 198 185 172)(160 199 186 173)(161 200 187 174)(162 201 188 175)(163 202 189 176)(164 203 190 177)(165 204 191 178)(166 205 192 179)(167 206 193 180)(168 207 194 181)(169 208 195 182)
(1 65)(2 92)(3 67)(4 94)(5 69)(6 96)(7 71)(8 98)(9 73)(10 100)(11 75)(12 102)(13 77)(14 104)(15 79)(16 54)(17 81)(18 56)(19 83)(20 58)(21 85)(22 60)(23 87)(24 62)(25 89)(26 64)(27 91)(28 66)(29 93)(30 68)(31 95)(32 70)(33 97)(34 72)(35 99)(36 74)(37 101)(38 76)(39 103)(40 78)(41 53)(42 80)(43 55)(44 82)(45 57)(46 84)(47 59)(48 86)(49 61)(50 88)(51 63)(52 90)(105 158)(106 185)(107 160)(108 187)(109 162)(110 189)(111 164)(112 191)(113 166)(114 193)(115 168)(116 195)(117 170)(118 197)(119 172)(120 199)(121 174)(122 201)(123 176)(124 203)(125 178)(126 205)(127 180)(128 207)(129 182)(130 157)(131 184)(132 159)(133 186)(134 161)(135 188)(136 163)(137 190)(138 165)(139 192)(140 167)(141 194)(142 169)(143 196)(144 171)(145 198)(146 173)(147 200)(148 175)(149 202)(150 177)(151 204)(152 179)(153 206)(154 181)(155 208)(156 183)
G:=sub<Sym(208)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208), (1,115)(2,114)(3,113)(4,112)(5,111)(6,110)(7,109)(8,108)(9,107)(10,106)(11,105)(12,156)(13,155)(14,154)(15,153)(16,152)(17,151)(18,150)(19,149)(20,148)(21,147)(22,146)(23,145)(24,144)(25,143)(26,142)(27,141)(28,140)(29,139)(30,138)(31,137)(32,136)(33,135)(34,134)(35,133)(36,132)(37,131)(38,130)(39,129)(40,128)(41,127)(42,126)(43,125)(44,124)(45,123)(46,122)(47,121)(48,120)(49,119)(50,118)(51,117)(52,116)(53,193)(54,192)(55,191)(56,190)(57,189)(58,188)(59,187)(60,186)(61,185)(62,184)(63,183)(64,182)(65,181)(66,180)(67,179)(68,178)(69,177)(70,176)(71,175)(72,174)(73,173)(74,172)(75,171)(76,170)(77,169)(78,168)(79,167)(80,166)(81,165)(82,164)(83,163)(84,162)(85,161)(86,160)(87,159)(88,158)(89,157)(90,208)(91,207)(92,206)(93,205)(94,204)(95,203)(96,202)(97,201)(98,200)(99,199)(100,198)(101,197)(102,196)(103,195)(104,194), (1,40,27,14)(2,41,28,15)(3,42,29,16)(4,43,30,17)(5,44,31,18)(6,45,32,19)(7,46,33,20)(8,47,34,21)(9,48,35,22)(10,49,36,23)(11,50,37,24)(12,51,38,25)(13,52,39,26)(53,66,79,92)(54,67,80,93)(55,68,81,94)(56,69,82,95)(57,70,83,96)(58,71,84,97)(59,72,85,98)(60,73,86,99)(61,74,87,100)(62,75,88,101)(63,76,89,102)(64,77,90,103)(65,78,91,104)(105,118,131,144)(106,119,132,145)(107,120,133,146)(108,121,134,147)(109,122,135,148)(110,123,136,149)(111,124,137,150)(112,125,138,151)(113,126,139,152)(114,127,140,153)(115,128,141,154)(116,129,142,155)(117,130,143,156)(157,196,183,170)(158,197,184,171)(159,198,185,172)(160,199,186,173)(161,200,187,174)(162,201,188,175)(163,202,189,176)(164,203,190,177)(165,204,191,178)(166,205,192,179)(167,206,193,180)(168,207,194,181)(169,208,195,182), (1,65)(2,92)(3,67)(4,94)(5,69)(6,96)(7,71)(8,98)(9,73)(10,100)(11,75)(12,102)(13,77)(14,104)(15,79)(16,54)(17,81)(18,56)(19,83)(20,58)(21,85)(22,60)(23,87)(24,62)(25,89)(26,64)(27,91)(28,66)(29,93)(30,68)(31,95)(32,70)(33,97)(34,72)(35,99)(36,74)(37,101)(38,76)(39,103)(40,78)(41,53)(42,80)(43,55)(44,82)(45,57)(46,84)(47,59)(48,86)(49,61)(50,88)(51,63)(52,90)(105,158)(106,185)(107,160)(108,187)(109,162)(110,189)(111,164)(112,191)(113,166)(114,193)(115,168)(116,195)(117,170)(118,197)(119,172)(120,199)(121,174)(122,201)(123,176)(124,203)(125,178)(126,205)(127,180)(128,207)(129,182)(130,157)(131,184)(132,159)(133,186)(134,161)(135,188)(136,163)(137,190)(138,165)(139,192)(140,167)(141,194)(142,169)(143,196)(144,171)(145,198)(146,173)(147,200)(148,175)(149,202)(150,177)(151,204)(152,179)(153,206)(154,181)(155,208)(156,183)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208), (1,115)(2,114)(3,113)(4,112)(5,111)(6,110)(7,109)(8,108)(9,107)(10,106)(11,105)(12,156)(13,155)(14,154)(15,153)(16,152)(17,151)(18,150)(19,149)(20,148)(21,147)(22,146)(23,145)(24,144)(25,143)(26,142)(27,141)(28,140)(29,139)(30,138)(31,137)(32,136)(33,135)(34,134)(35,133)(36,132)(37,131)(38,130)(39,129)(40,128)(41,127)(42,126)(43,125)(44,124)(45,123)(46,122)(47,121)(48,120)(49,119)(50,118)(51,117)(52,116)(53,193)(54,192)(55,191)(56,190)(57,189)(58,188)(59,187)(60,186)(61,185)(62,184)(63,183)(64,182)(65,181)(66,180)(67,179)(68,178)(69,177)(70,176)(71,175)(72,174)(73,173)(74,172)(75,171)(76,170)(77,169)(78,168)(79,167)(80,166)(81,165)(82,164)(83,163)(84,162)(85,161)(86,160)(87,159)(88,158)(89,157)(90,208)(91,207)(92,206)(93,205)(94,204)(95,203)(96,202)(97,201)(98,200)(99,199)(100,198)(101,197)(102,196)(103,195)(104,194), (1,40,27,14)(2,41,28,15)(3,42,29,16)(4,43,30,17)(5,44,31,18)(6,45,32,19)(7,46,33,20)(8,47,34,21)(9,48,35,22)(10,49,36,23)(11,50,37,24)(12,51,38,25)(13,52,39,26)(53,66,79,92)(54,67,80,93)(55,68,81,94)(56,69,82,95)(57,70,83,96)(58,71,84,97)(59,72,85,98)(60,73,86,99)(61,74,87,100)(62,75,88,101)(63,76,89,102)(64,77,90,103)(65,78,91,104)(105,118,131,144)(106,119,132,145)(107,120,133,146)(108,121,134,147)(109,122,135,148)(110,123,136,149)(111,124,137,150)(112,125,138,151)(113,126,139,152)(114,127,140,153)(115,128,141,154)(116,129,142,155)(117,130,143,156)(157,196,183,170)(158,197,184,171)(159,198,185,172)(160,199,186,173)(161,200,187,174)(162,201,188,175)(163,202,189,176)(164,203,190,177)(165,204,191,178)(166,205,192,179)(167,206,193,180)(168,207,194,181)(169,208,195,182), (1,65)(2,92)(3,67)(4,94)(5,69)(6,96)(7,71)(8,98)(9,73)(10,100)(11,75)(12,102)(13,77)(14,104)(15,79)(16,54)(17,81)(18,56)(19,83)(20,58)(21,85)(22,60)(23,87)(24,62)(25,89)(26,64)(27,91)(28,66)(29,93)(30,68)(31,95)(32,70)(33,97)(34,72)(35,99)(36,74)(37,101)(38,76)(39,103)(40,78)(41,53)(42,80)(43,55)(44,82)(45,57)(46,84)(47,59)(48,86)(49,61)(50,88)(51,63)(52,90)(105,158)(106,185)(107,160)(108,187)(109,162)(110,189)(111,164)(112,191)(113,166)(114,193)(115,168)(116,195)(117,170)(118,197)(119,172)(120,199)(121,174)(122,201)(123,176)(124,203)(125,178)(126,205)(127,180)(128,207)(129,182)(130,157)(131,184)(132,159)(133,186)(134,161)(135,188)(136,163)(137,190)(138,165)(139,192)(140,167)(141,194)(142,169)(143,196)(144,171)(145,198)(146,173)(147,200)(148,175)(149,202)(150,177)(151,204)(152,179)(153,206)(154,181)(155,208)(156,183) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208)], [(1,115),(2,114),(3,113),(4,112),(5,111),(6,110),(7,109),(8,108),(9,107),(10,106),(11,105),(12,156),(13,155),(14,154),(15,153),(16,152),(17,151),(18,150),(19,149),(20,148),(21,147),(22,146),(23,145),(24,144),(25,143),(26,142),(27,141),(28,140),(29,139),(30,138),(31,137),(32,136),(33,135),(34,134),(35,133),(36,132),(37,131),(38,130),(39,129),(40,128),(41,127),(42,126),(43,125),(44,124),(45,123),(46,122),(47,121),(48,120),(49,119),(50,118),(51,117),(52,116),(53,193),(54,192),(55,191),(56,190),(57,189),(58,188),(59,187),(60,186),(61,185),(62,184),(63,183),(64,182),(65,181),(66,180),(67,179),(68,178),(69,177),(70,176),(71,175),(72,174),(73,173),(74,172),(75,171),(76,170),(77,169),(78,168),(79,167),(80,166),(81,165),(82,164),(83,163),(84,162),(85,161),(86,160),(87,159),(88,158),(89,157),(90,208),(91,207),(92,206),(93,205),(94,204),(95,203),(96,202),(97,201),(98,200),(99,199),(100,198),(101,197),(102,196),(103,195),(104,194)], [(1,40,27,14),(2,41,28,15),(3,42,29,16),(4,43,30,17),(5,44,31,18),(6,45,32,19),(7,46,33,20),(8,47,34,21),(9,48,35,22),(10,49,36,23),(11,50,37,24),(12,51,38,25),(13,52,39,26),(53,66,79,92),(54,67,80,93),(55,68,81,94),(56,69,82,95),(57,70,83,96),(58,71,84,97),(59,72,85,98),(60,73,86,99),(61,74,87,100),(62,75,88,101),(63,76,89,102),(64,77,90,103),(65,78,91,104),(105,118,131,144),(106,119,132,145),(107,120,133,146),(108,121,134,147),(109,122,135,148),(110,123,136,149),(111,124,137,150),(112,125,138,151),(113,126,139,152),(114,127,140,153),(115,128,141,154),(116,129,142,155),(117,130,143,156),(157,196,183,170),(158,197,184,171),(159,198,185,172),(160,199,186,173),(161,200,187,174),(162,201,188,175),(163,202,189,176),(164,203,190,177),(165,204,191,178),(166,205,192,179),(167,206,193,180),(168,207,194,181),(169,208,195,182)], [(1,65),(2,92),(3,67),(4,94),(5,69),(6,96),(7,71),(8,98),(9,73),(10,100),(11,75),(12,102),(13,77),(14,104),(15,79),(16,54),(17,81),(18,56),(19,83),(20,58),(21,85),(22,60),(23,87),(24,62),(25,89),(26,64),(27,91),(28,66),(29,93),(30,68),(31,95),(32,70),(33,97),(34,72),(35,99),(36,74),(37,101),(38,76),(39,103),(40,78),(41,53),(42,80),(43,55),(44,82),(45,57),(46,84),(47,59),(48,86),(49,61),(50,88),(51,63),(52,90),(105,158),(106,185),(107,160),(108,187),(109,162),(110,189),(111,164),(112,191),(113,166),(114,193),(115,168),(116,195),(117,170),(118,197),(119,172),(120,199),(121,174),(122,201),(123,176),(124,203),(125,178),(126,205),(127,180),(128,207),(129,182),(130,157),(131,184),(132,159),(133,186),(134,161),(135,188),(136,163),(137,190),(138,165),(139,192),(140,167),(141,194),(142,169),(143,196),(144,171),(145,198),(146,173),(147,200),(148,175),(149,202),(150,177),(151,204),(152,179),(153,206),(154,181),(155,208),(156,183)]])
74 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 8A | 8B | 8C | 8D | 13A | ··· | 13F | 26A | ··· | 26F | 26G | ··· | 26X | 52A | ··· | 52L | 52M | ··· | 52AD |
order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 13 | ··· | 13 | 26 | ··· | 26 | 26 | ··· | 26 | 52 | ··· | 52 | 52 | ··· | 52 |
size | 1 | 1 | 2 | 4 | 52 | 1 | 1 | 2 | 4 | 52 | 26 | 26 | 26 | 26 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
74 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D13 | C4○D8 | D26 | D26 | D26 | C13⋊D4 | C13⋊D4 | C52.C23 |
kernel | C52.C23 | C2×C13⋊2C8 | D4⋊D13 | D4.D13 | Q8⋊D13 | C13⋊Q16 | D52⋊5C2 | C13×C4○D4 | C52 | C2×C26 | C4○D4 | C13 | C2×C4 | D4 | Q8 | C4 | C22 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 6 | 4 | 6 | 6 | 6 | 12 | 12 | 12 |
Matrix representation of C52.C23 ►in GL4(𝔽313) generated by
151 | 288 | 0 | 0 |
134 | 239 | 0 | 0 |
0 | 0 | 25 | 0 |
0 | 0 | 18 | 288 |
146 | 165 | 0 | 0 |
70 | 167 | 0 | 0 |
0 | 0 | 5 | 160 |
0 | 0 | 172 | 308 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 288 | 0 |
0 | 0 | 0 | 288 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 312 | 281 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(313))| [151,134,0,0,288,239,0,0,0,0,25,18,0,0,0,288],[146,70,0,0,165,167,0,0,0,0,5,172,0,0,160,308],[1,0,0,0,0,1,0,0,0,0,288,0,0,0,0,288],[1,0,0,0,0,1,0,0,0,0,312,0,0,0,281,1] >;
C52.C23 in GAP, Magma, Sage, TeX
C_{52}.C_2^3
% in TeX
G:=Group("C52.C2^3");
// GroupNames label
G:=SmallGroup(416,171);
// by ID
G=gap.SmallGroup(416,171);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-13,103,218,579,159,69,13829]);
// Polycyclic
G:=Group<a,b,c,d|a^52=b^2=d^2=1,c^2=a^26,b*a*b=a^-1,a*c=c*a,d*a*d=a^27,b*c=c*b,d*b*d=a^13*b,c*d=d*c>;
// generators/relations